24x^2+82x+40=0

Simple and best practice solution for 24x^2+82x+40=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+82x+40=0 equation:


Simplifying
24x2 + 82x + 40 = 0

Reorder the terms:
40 + 82x + 24x2 = 0

Solving
40 + 82x + 24x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '2'.
2(20 + 41x + 12x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(20 + 41x + 12x2)' equal to zero and attempt to solve: Simplifying 20 + 41x + 12x2 = 0 Solving 20 + 41x + 12x2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. 1.666666667 + 3.416666667x + x2 = 0 Move the constant term to the right: Add '-1.666666667' to each side of the equation. 1.666666667 + 3.416666667x + -1.666666667 + x2 = 0 + -1.666666667 Reorder the terms: 1.666666667 + -1.666666667 + 3.416666667x + x2 = 0 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + 3.416666667x + x2 = 0 + -1.666666667 3.416666667x + x2 = 0 + -1.666666667 Combine like terms: 0 + -1.666666667 = -1.666666667 3.416666667x + x2 = -1.666666667 The x term is 3.416666667x. Take half its coefficient (1.708333334). Square it (2.918402780) and add it to both sides. Add '2.918402780' to each side of the equation. 3.416666667x + 2.918402780 + x2 = -1.666666667 + 2.918402780 Reorder the terms: 2.918402780 + 3.416666667x + x2 = -1.666666667 + 2.918402780 Combine like terms: -1.666666667 + 2.918402780 = 1.251736113 2.918402780 + 3.416666667x + x2 = 1.251736113 Factor a perfect square on the left side: (x + 1.708333334)(x + 1.708333334) = 1.251736113 Calculate the square root of the right side: 1.118810133 Break this problem into two subproblems by setting (x + 1.708333334) equal to 1.118810133 and -1.118810133.

Subproblem 1

x + 1.708333334 = 1.118810133 Simplifying x + 1.708333334 = 1.118810133 Reorder the terms: 1.708333334 + x = 1.118810133 Solving 1.708333334 + x = 1.118810133 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.708333334' to each side of the equation. 1.708333334 + -1.708333334 + x = 1.118810133 + -1.708333334 Combine like terms: 1.708333334 + -1.708333334 = 0.000000000 0.000000000 + x = 1.118810133 + -1.708333334 x = 1.118810133 + -1.708333334 Combine like terms: 1.118810133 + -1.708333334 = -0.589523201 x = -0.589523201 Simplifying x = -0.589523201

Subproblem 2

x + 1.708333334 = -1.118810133 Simplifying x + 1.708333334 = -1.118810133 Reorder the terms: 1.708333334 + x = -1.118810133 Solving 1.708333334 + x = -1.118810133 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.708333334' to each side of the equation. 1.708333334 + -1.708333334 + x = -1.118810133 + -1.708333334 Combine like terms: 1.708333334 + -1.708333334 = 0.000000000 0.000000000 + x = -1.118810133 + -1.708333334 x = -1.118810133 + -1.708333334 Combine like terms: -1.118810133 + -1.708333334 = -2.827143467 x = -2.827143467 Simplifying x = -2.827143467

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.589523201, -2.827143467}

Solution

x = {-0.589523201, -2.827143467}

See similar equations:

| 2/x=33/100 | | -4(b-2)=-12 | | -2(m+4)=22 | | 29-4x=1 | | 3n+9+15=-1 | | k/6-k=3 | | 9a^2+3a=18 | | 24x^2-80x+19=0 | | 2/x=95/100 | | 2y+5(.5-1.25y)=11 | | 3n+9+15=1 | | 3c-8=7c | | 4-(b-2)=-12 | | (8+2i)+(7-10i)= | | x^2-64=1 | | 3x-14+2(x-a)=2x-2 | | -4(b-2)=12 | | 3x/2(7-5)=-10 | | 4y+7=-25 | | 4(2.5x+1.5)-4.5(4x+5)= | | 8+4p=4 | | 7m-2n=-13 | | 7x/6(9-6)=0 | | (10a^4b-5/-5a^2b-2)3 | | -4x-3+6x-9= | | 3e^5x-6=12 | | 4(3z+7)=-2(6z+14) | | -28=-4(2y-3) | | 9y^2-54y=-81 | | -8(n-3)=-6+38 | | y^3=9/25 | | 2.7x=1.8 |

Equations solver categories